"Lester Brown has produced another 'planetary survey' book that tells us how to get off the wrecking train we are on by courtesy of a dozen environmental assaults such as climate change. The better news (and there’s plenty) is that turning problems into opportunities generally puts money into our pockets." —Norman Myers, 21st Century School, University of Oxford on World on the Edge: How to Prevent Environmental and Economic Collapse
Chapter 3. Signs of Stress: The Biological Base: Fisheries Collapsing
Among the three ecosystems that supply our food—croplands, rangelands, and fisheries—the excessive demand on fisheries is perhaps most visible. After World War II, accelerating population growth and steadily rising incomes drove the demand for seafood upward at a record pace. At the same time, advances in fishing technologies, including refrigerated processing ships that enabled trawlers to exploit distant oceans, dramatically boosted fishing capacity.
In response, the oceanic fish catch climbed from 19 million tons in 1950 to its historic high of 93 million tons in 1997. This fivefold growth—more than double that of population during this period—raised seafood consumption per person worldwide from 8 kilograms in 1950 to a peak of 17 kilograms in 1988. Since then, it has fallen to scarcely 15 kilograms, a drop of one eighth.6
Oceanic fisheries were long a leading source of animal protein in the diet of island countries and those with long coastlines, such as Norway and Italy, but it was not until the second half of the twentieth century that fishing fleets began to systematically exploit the oceanic food potential. This, combined with improved inland transportation and refrigeration, made seafood a basic component of diets for most of humanity.
In the early 1990s, the U.N. Food and Agriculture Organization (FAO), which monitors oceanic fisheries, reported that all of the world's 17 major fisheries were being harvested at or beyond their sustainable capacity and that 9 were in a state of decline. Many countries were trying to protect their fisheries from overfishing and eventual collapse. In 1992, Canada, which had waited too long to restrict the catch in its 500-year-old cod fishery off the coast of Newfoundland, was forced to suspend fishing there entirely, putting some 40,000 fishers and fish processors out of work. Then in late 1993, Canada closed additional stretches of water to cod fishing, with the off-limits area creeping down toward the U.S. coast. The United States followed with restrictions designed to save its cod, haddock, and flounder fisheries off New England.7
On the West coast, conditions were no better. In April 1994, the Pacific Fishery Management Council banned salmon fishing off Washington State in an effort to protect the species from extinction. In Oregon and California, stringent salmon quotas were imposed. Actions by the United States and Canada, combined with similar measures by governments elsewhere, implicitly acknowledge that unrestricted harvesting could destroy fisheries, depriving the world of a valuable food source.8
The inability of governments to cooperate in oceanic fishery management means that instead of yielding maximum sustainable catch indefinitely, many fisheries have been fished to the verge of collapse. Atlantic stocks of the heavily fished bluefin tuna, a standby in Tokyo's sushi restaurants, have been cut by a staggering 94 percent. It will take years for such long-lived species to recover, even if fishing stops altogether.9
Inland fisheries are also suffering from environmental mismanagement—water diversion, acidification, and pollution. As noted in Chapter 2, the Aral Sea fishery, which yielded 60,000 tons (close to 130 million pounds) of fish per year as recently as 1960, is now history. Rising salt content has left the sea biologically dead.10
A June 2001 report indicates that Russia's Azov Sea is also dying. Rising levels of salt, petroleum wastes, heavy metal pollution, and radioactive materials are apparently involved. The commercial fish catch has dropped 97 percent over the last quarter-century. Many species are extinct. As one commentator noted, the Sea of Azov has become "a body of water that cannot support either life within it or the lives of the people who live around it."11
Acidification of lakes from acid rain, largely from coal burning, is also still a problem. Canada alone now counts 14,000 dead lakes. And pollution is taking a toll on freshwater lakes, either destroying the fish or rendering them unsafe for human consumption. In the United States, fish in some 50,000 freshwater lakes, streams, and ponds contain levels of mercury that make them unsafe for human consumption. Mercury from the smokestacks of coal-fired power plants is largely responsible. (See Chapter 6.)12
Overfishing and pollution are not the only threats to the world's seafood supply. The spawning grounds and nurseries of many aquatic creatures are disappearing as coastal wetlands, mangrove forests, and coral reefs are destroyed. In addition, the damming of rivers is depriving many species of their spawning grounds. Other rivers are drained dry, with the same effect. Still others are simply too polluted for fish to survive.
Some 90 percent of oceanic fish rely on coastal wetlands, mangrove swamps, or rivers as spawning areas. Well over half the original area of mangrove forests in tropical and subtropical countries has been lost. The disappearance of coastal wetlands in industrial countries is even greater. In Italy, whose coastal wetlands are the nurseries for many Mediterranean fisheries, the loss is a staggering 95 percent.13
Damage to coral reefs, a breeding ground for fish in tropical and subtropical waters, is also taking a toll. Between 1992 and 2000, the share of severely damaged reefs worldwide expanded from 10 percent to 27 percent. As the reefs deteriorate, so do the fisheries that depend on them.14
Oceanic fisheries face numerous threats, but it is overfishing that most directly threatens their survival. Oceanic harvests expanded as new technologies evolved, ranging from sonar for tracking schools of fish to vast driftnets that are collectively long enough to circle the earth many times over. "With more powerful boats and fish finders, we basically have the capacity to wipe fish out, and we are," warns Douglas Foy of the Conservation Law Foundation in New England.15
Commercial fishing is now largely an economics of today versus tomorrow. Governments are seeking to protect tomorrow's catches by forcing fishers to keep their ships idle; fishing communities are torn between the need for income today versus the future. Ironically, one reason for excess fleet capacity is long-standing government subsidies that provide large loans and favorable terms for investing in new boats and fishing gear. By 2000, however, these loans had become unsupportable as catches dwindled. Catch quotas kept many fishing boats at anchor during what used to be peak fishing months.16
Fishing subsidies were based on an unfounded belief that past trends in oceanic harvests could be projected into the future—that past growth meant future growth. The long-standing advice of FAO marine biologists, who had warned that marine harvests would someday reach a limit, was largely ignored.17
As long as there were more fish in the oceans than we could hope to catch, managing oceanic fisheries was a simple matter. But with many fisheries already collapsing, and others facing imminent collapse, the management challenge of allocating the catch among competing nations and protein-hungry populations is infinitely more difficult. Merely sustaining the existing catch will require new levels of cooperation among national governments.
Even among countries accustomed to working together, such as those in the European Union (EU), the challenge of negotiating catch limits at sustainable levels can be difficult. In April 1997, after prolonged negotiations, agreement was reached in Brussels to reduce the fishing capacity of EU fleets by 30 percent for endangered species, such as cod, herring, and sole in the North Sea, and by 20 percent for overfished stocks, such as cod in the Baltic Sea, the bluefin tuna, and swordfish off the Iberian peninsula. The good news was that the EU finally reached agreement on reducing the catch. The bad news was that these cuts were not sufficient to arrest the decline of the region's fisheries.18
In January 2001, the EU went further, announcing a ban on fishing for cod, haddock, and whiting during the 12-week spring spawning period. With the annual cod catch falling from 300,000 tons during the mid-1980s to 50,000 tons in 2000, this most recent step was a desperate effort to save the fishery. EU officials are all too aware that Canada's once-vast Newfoundland cod fishery has not recovered since collapsing in 1992, despite the total ban on fishing imposed then.19
When some fisheries collapse, it puts more pressure on those that are left. With restrictions on the overfished EU fishery, the heavily subsidized EU fishing fleet has turned to the west coast of Africa, buying licenses to fish off the coasts of Senegal, Mauritania, Morocco, Guinea-Bissau, and Cape Verde. They are competing for space there with fleets from Japan, South Korea, Russia, and China. For impoverished countries like Mauritania and Guinea-Bissau, income from fishing licenses can account for up to half of government revenue. Unfortunately for the Africans, their fisheries too are collapsing. Most countries lack the ships and radar to ensure compliance with fishing agreements in the 200-mile exclusive economic zones off their coasts that were granted by the 1979 Law of the Sea Treaty.20
Fisheries everywhere are facing the same fate. On the west coast of India, the fishery off the coast of Goa has grown by leaps and bounds as the mechanized fishing fleet has jumped from 10 boats in 1964 to 2,200 in 1998. Meanwhile, the annual catch increased from 17,000 tons to 95,000 tons—well beyond the estimated maximum sustainable yield of 71,000 tons. Unless the Indian government can quickly reduce the catch here to the sustainable level, this fishery too will collapse, depriving India's coastal population of a sorely needed source of protein.21
If the oceans cannot sustain a catch of more than 95 million tons and if world population continues to grow as projected, the oceanic fish catch per person-which has already declined 9 percent since it peaked in 1988—is likely to drop to 10 kilograms per person in 2050. The generation that came of age during World War II saw the fish catch per person double during their lifetimes. Their grandchildren, the children of today, may witness a one-third reduction.22
The bottom line is that the growing worldwide demand for seafood can no longer be satisfied from oceanic fisheries. If it is to be satisfied, it will be by expanding fish farming, which will further intensify the pressure on land resources. Once fish are put in ponds or cages, they have to be fed. (See Chapter 7.)
ENDNOTES:
6. FAO, Yearbook of Fishery Statistics: Capture Production (Rome: various years); United Nations, World Population Prospects: The 2000 Revision (New York: February 2001).
7. FAO, The State of Food and Agriculture 1993 (Rome: 1993); Mark Clayton, "Hunt for Jobs Intensifies as Fishing Industry Implodes," Christian Science Monitor, 25 August 1993; Clyde H. Farnsworth, "Cod are Almost Gone and a Culture Could Follow," New York Times, 28 May 1994.
8. "Salmon Fishing Banned Along Washington Coast," Washington Post, 10 April 1994.
9. Based on "Bluefin Tuna Reported on Brink of Extinction," Journal of Commerce, 10 November 1993, and on Ted Williams, "The Last Bluefin Hunt," in Valerie Harms et al., The National Audubon Society Almanac of the Environment: The Ecology of Everyday Life (New York: Grosset/Putnam, 1994), p. 185.
10. Lester R. Brown, "The Aral Sea: Going, Going.," World Watch, January/February 1991, pp. 20-27.
11. Paul Goble, "Another Dying Sea," Radio Free Europe/Radio Liberty, 20 June 2001.
12. Dead lakes in Canada from "Planet in Peril," New Internationalist, May 1987; mercury contaminated fish from Patricia Glick, The Toll From Coal (Washington, DC: National Wildlife Federation, April 2000), p. 10.
13. Lauretta Burke et al., Pilot Analysis of Global Ecosystems: Coastal Ecosystems (Washington, DC: WRI, 2000), pp. 19, 51; coastal wetland loss in Italy from Lester R. Brown and Hal Kane, Full House (New York: W.W. Norton & Company, 1994), p. 82.
14. Clive Wilkinson, Status of Coral Reefs of the World: 2000 (Townsville, Australia: Global Coral Reef Monitoring Network, 2000), p. 1.
15. Brown and Kane, op. cit. note 13, pp. 83-84.
16. Organisation for Economic Cooperation and Development, OECD Environmental Outlook (Paris: 2001), pp. 109-20.
17. J.A. Gulland, ed., Fish Resources of the Ocean (Surrey: U.K.: Fishing News Ltd., 1971), an FAO-sponsored publication that estimated that oceanic fisheries would not be able to sustain an annual yield of more than 100 million tons.
18. Caroline Southey, "EU Puts New Curbs on Fishing," Financial Times, 16 April 1997.
19. Dan Bilefsky, "North Sea's Cod Grounds to be Closed for 12 Weeks," Financial Times, 25 January 2001; Paul Brown and Andrew Osborn, "Ban on North Sea Cod Fishing," Guardian, 25 January 2001; Alex Kirby, "UK Cod Fishing 'Could be Halted,'" BBC News, 6 November 2000.
20. Diadie Ba, "Senegal, EU Prepare for Fisheries Deal Tussle," Reuters, 28 May 2001.
21. Frederick Noronha, "Overfishing Along India's West Coast Threatens to Wipe Out Fish," Environment News Service, 16 October 2000.
22. FAO, op. cit. note 6; United Nations, op. cit. note 6.
Copyright © 2001 Earth Policy Institute